经过溶剂回收处理后的气体中**溶剂的含量可以在39ppm以下,或者到“零”排放要求,同时我们也在NMP废气排放参照执行《前苏联工作环境空气中有害**物的较大允许浓度》和按照《制定地方大气污染物排放标准的技术方法》(GB/T3840-91)计算出的排放速率标准要求。完全满足ISO14000之要求和符合国家《大气污染物综合排放标准》GB16297-1996。
涂布机中的空气采取闭式循环,环境温度、湿度以及空气质量对涂布质量影响减小。
(二)余热回收--采用高效节能技术使涂布机热能消耗降低60-80%:正常情况下涂布过程有大量的气体排出,其温度一般在110℃左右,同时有大量的新鲜空气补充到涂布机中。我公司采取先进的内循环显热交换传热技术将排气与补充到涂布机的新鲜空气进行热量少部分进行交换,大部分不交换经过净化处理后立即补充到涂布机的中去,使补充到涂布机中的空气预热到85.5℃左右,从而使涂布机的加热能量下降60-80%左右,同时使进入表冷的空气温度降至55℃。
本发明的一种NMP废液提纯的系统,包括过滤装置、一蒸馏装置、二蒸馏装置、导热油加热装置,所述导热油加热装置用于加热导热油后供给给一蒸馏装置和二蒸馏装置,所述过滤装置包括:
过滤粗袋,所述过滤粗袋具有600um孔径的过滤孔,其对NMP废液原液进行大颗粒杂质过滤,过滤掉直径大于600um的粗大颗粒,含有细小颗粒及大分子杂质的粗虑NMP废液;
过滤细袋,所述过滤细袋具有100um孔径的过滤孔,其对粗虑NMP废液进行可见杂质过滤,过滤掉直径大于100um的细小颗粒,含有大分子杂质的细滤NMP废液;
精滤过滤器,所述精滤过滤器具有精滤过滤膜,所述精滤过滤膜具有孔径80um的过滤孔,其对细滤NMP废液进行精滤过滤,过滤掉直径大于80um的大分子微粒杂质,含有直径小于80um的大分子杂质的精滤NMP废液;
二级精滤过滤器,所述二级精滤过滤器具有二级精滤过滤膜,所述二级精滤过滤膜具有孔径40um的过滤孔,其对精滤NMP废液进行二级精滤过滤,过滤掉直径大于40um的分子微粒杂质,含有直径小于40um的分子杂质的二级精滤NMP废液;
**精滤过滤器,所述**精滤过滤器具有**精滤过滤膜,所述**精滤过滤膜具有孔径8nm的过滤孔,其对二级精滤NMP废液进行**精滤过滤,过滤掉直径大于8nm的分子微粒杂质,只含有NMP分子和水分子的**精滤NMP废液;
所述一蒸馏装置包括**重力精馏塔,所述**重力精馏塔将上述的**精滤NMP废液进行**重力精馏提纯处理,粗制NMP成品,所述导热油加油装置为所述**重力精馏塔提供加热后的导热油,从而将**重力精馏塔加热;
所述二蒸馏装置包括减压精馏塔,所述减压精馏塔将上述的粗制NMP成品进行减压精馏提纯处理,精制NMP成品,所述导热油加油装置为所述减压精馏塔提供加热后的导热油,从而将减压精馏塔加热。
进一步,所述一蒸馏装置还包括一冷凝器,所述**重力精馏塔将**精滤NMP废液进行脱水分离后,将液体NMP加热成气相NMP,所述一冷凝器将气相NMP冷凝成粗制NMP成品。
进一步,所述二蒸馏装置还包括二冷凝器,所述减压精馏塔将粗制NMP成品进行减压加热蒸馏成气相NMP,所述二冷凝器将气相NMP冷凝成精制NMP成品,所述精制NMP成品存入成品罐。
进一步,所述二冷凝器和储液罐之间还设有NMP浓度检测仪,用于检测从二冷凝器流出的精制NMP成品中的NMP浓度,若浓度达标,将液体输送入成品罐;若不达标,将液体输送回减压精馏塔继续进行加工,直到达标为止。
本发明的有益之处在于:能够除掉NMP废液中的绝大部分可见的大小颗粒杂质及不可见的分子杂质,能99.9%**高纯度的NMP成品液。
本实施例中,所述步骤1.1中,NMP废液流量控制在6 m3/h,压力控制在0.2mpa,所述步骤1.2中,NMP废液流量控制在6 m3/h,压力控制在0.3mpa,所述步骤1.3中,NMP废液流量控制在6 m3/h,压力控制在0.6mpa,所述步骤1.4中,NMP废液流量控制在3 m3/h,压力控制在0.7mpa,所述步骤1.5中,NMP废液流量控制在1 m3/h,压力控制在1.5mpa,NMP废液的浓度可达到99.9%。
实施例二
本实施例中,所述步骤1.1中,NMP废液流量控制在6 m3/h,压力控制在0.3mpa,所述步骤1.2中,NMP废液流量控制在6 m3/h,压力控制在0.4mpa,所述步骤1.3中,NMP废液流量控制在6 m3/h,压力控制在0.7mpa,所述步骤1.4中,NMP废液流量控制在3 m3/h,压力控制在0.75mpa,所述步骤1.5中,NMP废液流量控制在1 m3/h,压力控制在1.8mpa,其余与实施例一一样,NMP废液的浓度可达到99.9%。
实施例三
本实施例中,所述步骤1.1中,NMP废液流量控制在6m3/h,压力控制在0.25mpa,所述步骤1.2中,NMP废液流量控制在6m3/h,压力控制在0.35mpa,所述步骤1.3中,NMP废液流量控制在6m3/h,压力控制在0.65mpa,所述步骤1.4中,NMP废液流量控制在3 m3/h,压力控制在0.73mpa,所述步骤1.5中,NMP废液流量控制在1 m3/h,压力控制在1.6mpa,其余与实施例一一样,NMP废液的浓度可达到99.9%。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,上述实施例不以任何形式限制本发明,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。