经过溶剂回收处理后的气体中**溶剂的含量可以在39ppm以下,或者到“零”排放要求,同时我们也在NMP废气排放参照执行《前苏联工作环境空气中有害**物的大允许浓度》和按照《制定地方大气污染物排放标准的技术方法》(GB/T3840-91)计算出的排放速率标准要求。完全满足ISO14000之要求和符合《大气污染物综合排放标准》GB16297-1996。
涂布机中的空气采取闭式循环,环境温度、湿度以及空气质量对涂布质量影响减小。
(二)余热回收--采用高效节能技术使涂布机热能消耗降低60-80%:正常情况下涂布过程有大量的气体排出,其温度一般在110℃左右,同时有大量的新鲜空气补充到涂布机中。我公司采取先进的内循环显热交换传热技术将排气与补充到涂布机的新鲜空气进行热量少部分进行交换,大部分不交换经过净化处理后立即补充到涂布机的中去,使补充到涂布机中的空气预热到85.5℃左右,从而使涂布机的加热能量下降60-80%左右,同时使进入表冷的空气温度降至55℃。
由于废气温度较高,要对NMP彻底进行回收,存在一个能量置换的过程,所以在NMP回收的过程中会造成一部分水份蒸发。本实用新型采用不锈钢循环泵将液体引入吸附单元进行循环利用,充分进行热能转换,便于提高NMP回
收液的浓度。通过控制水份蒸发提高NMP回收废液的浓度。水份蒸发带走热量,同时NMP被截留下来,充分保证排出的尾气达到环保标准。利用NMP水溶性高的特点对NMP废气进行处理,水吸附的方式可以把废气中的NMP基本上完全吸收,使NMP的纯回收率达到90%以上。LCD液晶生产中的高温工业废气(约120℃)在常压下,通过预处理装置喷入雾化状态的去离子水,废气降温到40~80℃,再通过冷凝器降温到20~40℃,NMP与去离子水一同冷凝下来,回收液浓度达到20%以上,排放气的温度为20~40℃,排放气的浓度为50×10-6以下。回收液再经过提纯处理,得到纯度很高的N-烷酮成品,去离子水返回使用。
、丙酮、等低沸点的溶剂以及上述几种溶剂中任意两种或几种溶剂的不同浓度的混合物。利用去离子水与NMP具有互溶性,以及去离子水与NMP具有不同的分压的原理,在冷凝时,由于NMP比去离子水的沸点高出许多,也比去离子水易于冷凝,因此冷凝液中NMP的浓度比气相中NMP浓度高出许多,回收液浓度高,达到20%~50%。该方法与普通的冷凝法相比具有在常温下即可操作,冷凝温度低于40℃即可,而无须**低温。其中经过回收装置得到的冷凝回收液的浓度远不能满足生产过程的需要,而必须经过纯化塔作深度处理。回收液提纯处理时采用精馏方法,因为NMP常压下的沸点很高,所以设计真空精馏的操作方式,以节约能耗和降低操作成本,经过纯化塔NMP的纯度可以达到99.95%以上。
本实用新型所述的回收系统废气经过吸收单元吸附,根据废气中的NMP基本上都溶于水或者水蒸汽,经过气液分离、漂洗使废气中的NMP彻底被吸附。基于回收装置都有组装循环泵,在线浓度仪安装在循环泵的外循环管道中实时检测NMP液体浓度,可以有效减少水资源的浪费以及成品NMP回收液排放。用冷却水经水-气换热器将含有NMP的高温空气冷却,使废气中的NMP以液态的形式从空气中分离后回收,用在线浓度计实时控制NMP实时浓度值,大幅度提高了回收效率和自动化科技生产率。已分离NMP的空气经过气-气换热器进行热能交换再循环利用。
本实用新型采用共凝法喷水雾化后,由于水的汽化吸热使高温废气降温,冷凝排放温度越高,所需喷水量越大,废气温度下降幅度越大,后期需要的冷凝换热量越小,但是回收液浓度低,回收液量增加,精馏能耗增加;冷凝排放温度低,前期消耗的冷量高,需要换热器的面积大,要求冷却介质温度低,但是喷水量减小,回收液浓度增加,后期精馏处理的回收液量小,精馏段的能耗较低;但总的说来,由于雾化过程中水汽化吸热降温的作用,排放温度高时所需总能耗要低于排放温度低时的总能耗,但是排放温度也有一定的限制,当排放温度**过40℃,由于喷水量大,废气降温幅度大,难以保证喷入水的充分汽化,所以比较理想的冷凝排放温度选择在30℃左右比较适宜。N-烷酮是广普高效的极性溶剂,在常温下与水可100%互溶,常压下沸点为202℃。根据NMP特有的物理特性,使用低能耗的冷冻、冷凝方法,经过特别的工艺流程设计,制造出高效回收**废气NMP的成套设备,不但可明显减少**物的排放,亦可获得可观的经济效益。
本实用新型并不受上述实施方式的限制,其他的任何未背离本实用新型的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本实用新型的保护范围之内。